style> #wennei .showanswer{font-size: 14px;margin-bottom: 10px} .g9{font-size: 14px;}
隐藏菜单
id_7广告位-99%*49
搜索
六年级数学上各单元知识点(六年级数学每个单元的重点知识)
人阅读
id_1广告位-95%*60

上学期间,看到知识点,都是先收藏再说吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。还在苦恼没有知识点总结吗?下面是小编为大家整理的,欢迎阅读,希望大家能够喜欢。

1

第一单元分数乘法

一、分数乘法

「一」分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? ×5表示求5个的和是多少?

2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:×表示求的是多少。

4×表示求4的是多少.

「二」、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。「整数和分母约分」

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)

4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

「三」、乘法中比较大小的规律

一个数「0除外」乘大于1的数,积大于这个数。

一个数「0除外」乘小于1的数「0除外」,积小于这个数。

一个数「0除外」乘1,积等于这个数。

「四」、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a × b = b × a

乘法结合律:「 a × b 」×c = a × 「 b × c 」

乘法分配律:「 a + b 」×c = a c + b c

二、分数乘法的解决问题「已知单位“1”的量「用乘法」,即求单位“1”的几分之几是多少」

1、画线段图:「1」两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。「2」部分和整体的关系:画一条线段图。

2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:

「1」“的”相当于“×”,“占”、“相当于”“是”、“比”是“ = ”

「2」分率前是“的”字:用单位“1”的量×分率=具体量

例如:甲数是20,甲数的是多少?列式是:20×

4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

(比少):单位“1”的量×「1-分率」=具体量;

例如:甲数是50,乙数比甲数少,乙数是多少?列式是:50×(1-)

(比多):单位“1”的量×「1+分率」=具体量

例如:小红有30元钱,小明比小红多,小红有多少钱?列式是:50×(1+)

3、求一个数的几倍是多少:用一个数×几倍;

4、求一个数的几分之几是多少:用一个数×几分之几。

5、求几个几分之几是多少:用几分之几×个数

6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

「1」、单位“1”的量×「1-分率」=另一个部分量(建议用)

「2」、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

2

一、确定物体位置的方法:

1、先找观测点;

2、再定方向(看方向夹角的度数);

3、最后确定距离(看比例尺)

二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:

两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数除法

1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 「要说清谁是谁的倒数」。

2、求倒数的方法:

「1」、求分数的倒数:交换分子分母的位置。

「2」、求整数的`倒数:把整数看做分母是1的分数,再交换分子分母的位置。

「3」、求带分数的倒数:把带分数化为假分数,再求倒数。

「4」、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,「分母不能为0」 X k B 1 . c o m

4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

5、运用,a×=b×求a和b是多少。把a×=b×看成等于1,也就是求的倒数和求的倒数。

1、分数除法的意义:

乘法:因数×因数=积

除法:积÷一个因数=另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

例如:÷意义是:已知两个因数的积是与其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

3、分数除法比较大小时的规律:

「1」当除数大于1,商小于被除数;

「2」当除数小于1「不等于0」,商大于被除数;

「3」当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题

1,解法:「1」方程:根据数量关系式设未知量为X,用方程解答。

解:设未知量为X(一定要解设),再列方程用X×分率=具体量

例如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×=20

「2」算术「用除法」:单位“1”的量未知用除法:

即已知单位“1”的几分之几是多少,求单位“1”的量。

分率对应量÷对应分率=单位“1”的量

例如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷

2、看分率前有没有比多或比少的问题;

分率前是“多或少”的关系式:

(比少):具体量÷ 「1-分率」=单位“1”的量;

例如:桃树有50棵,比苹果树少,苹果树有多少棵。

列式是:50÷(1-)

(比多):具体量÷ 「1+分率」=单位“1”的量

例如:一种商品现在是80元,比原价增加了,原价多少?

列式是:80÷(1+)

3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。

例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。

列式是:15÷20==

4、求一个数比另一个数多几分之几的方法:X k B 1 . c o m

用两个数的相差量÷单位“1”的量=分数

即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:5比3多几分之几?(5-3)÷3=

②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:3比5少几分之几?(5-3)÷5=说明:多几分之几不等于少几分之几,因为单位一不同。

5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)

例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(++)

第四单元比

「一」、比的意义

1、比的意义:两个数相除又叫做两个数的比。

元旦班会演讲稿

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如15:10 = 15÷10= 「比值通常用分数表示,也可以用小数或整数表示」

15 ∶ 10=

前项比号后项比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

前项

比号“:”

后项

比值

除法

被除数

除号“÷”

除数

分数

分子

分数线“—”

分母

分数值

六年级上数学单元知识点

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

例如:15∶ 10=15÷10==

「二」、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数「0除外」,商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时「0除外」,分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数「0除外」,比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

「2」用求比值的方法。注意:最后结果要写成比的形式。

例如:15∶10 = 15÷10 === 3∶2

还可以15∶10 = 15÷10 =最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5糖占用25×得到糖的数量,水占用25×得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

第五单元圆的认识

一、认识圆形

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

「2」拼出的图形与圆的周长和半径的关系。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

3、圆面积的计算方法:因为:长方形面积=长×宽

所以:圆的面积=圆周长的一半×圆的半径

即S圆=C÷2× r=πr × r=πr

圆的面积公式:S圆=πr → r= S圆÷ π

4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。「R=r+环的宽度.」

S环= πR-πr或环形的面积公式:S环= π「R-r」(建议用这个公式)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。

6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。

例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。

9、常用各π值结果:π = 3.14;2π = 6.28;5π=15.7

10、外方内圆(内切圆)公式S=0.86r推导过程:S=S正-S圆=d-πr=2r×2r-πr=4r-πr=r×「4-π」=0.86r

11、外圆内方(外切圆)公式S=1.14r推导过程:S=S圆-S正=πr-dr/2×2=2r×r/2×r=πr-2r=r×「π-2」=1.14r(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)

12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。

13、S扇=S圆×n/360;S扇环=S环×n/360

14、扇形也是轴对称图形,有一条对称轴。

15、常见半径与直径的周长和面积的结果。

半径

半径的平方

直径

周长

面积

1

1

2

6.28

3.14

2

4

4

12.56

12.56

3

9

6

18.84

28.26

4

16

8

25.12

50.24

5

25

10

31.4

78.5

6

36

12

37.68

113.04

7

49

大学期末评语简短100个

14

43.96

153.86

8

64

16

50.24

200.96

9

81

18

56.52

254.34

10

100

20

62.8

314

1.5

2.25

3

9.42

7.065

2.5

6.25

5

15.7

19.625

3.5

12.25

7

21.98

38.465

4.5

20.35

9

28.26

63.585

5.5

30.25

11

34.54

94.985

7.5

56.25

15

47.1

176.625

六年级数学上各单元知识点3

第六单元百分数

一、百分数的意义和写法

(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

(二)、百分数和分数的主要联系与区别:

联系:都可以表示两个量的倍比关系。

区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

二、百分数和分数、小数的互化

「一」百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

「二」百分数的和分数的互化

1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

2、分数化成百分数:

①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数「除不尽时,通常保留三位小数」,再把小数化成百分数。(建议用这种方法)

「三」常见分数小数百分数之间的互化;X K b1 .C om

三、用百分数解决问题

「一」一般应用题

1、常见的百分率的计算方法:

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。

列式是:15÷20==75﹪

3、已知单位“1”的量「用乘法」,求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

「1」百分率前是“的”:单位“1”的量×百分率=百分率对应量

「2百分率前是“多或少”的数量关系:

单位“1”的量×「1±百分率」=百分率对应量

4、未知单位“1”的量「用除法」,已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

解法:「1」方程:根据数量关系式设未知量为X,用方程解答。

「2」算术「用除法」:百分率对应量÷对应百分率=单位“1”的量

5、求一个数比另一个数多「少」百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

百分率前是“多或少”的关系式:w W w . K b 1.c o M

(比少):具体量÷ 「1-百分率」=单位“1”的量;

例如:大米有50千克,比面粉树少50﹪,面粉有多少千克。

列式是:50÷(1-50﹪)

(比多):具体量÷ 「1+百分率」=单位“1”的量

例如:工人做110个零件,比原计划多做了10﹪,原计划做多少个?

列式是:110÷(1+10﹪)

6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

用两个数的相差量÷单位“1”的量=百分之几

即①求一个数比另一个数多百分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)

方法B,甲÷乙-100﹪

例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?

列式是:(50-40)÷40=0.25=25﹪

②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)

方法B,100﹪-乙÷甲

例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?

(100-90)÷100=0.1=10﹪

说明:多百分之几不等于少百分之几,因为单位一不同。

7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)

8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a﹪)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

  推荐阅读

  植树节的活动总结和提议_班级植树节的活动总结

  卫生保健工作总结100字_卫生保健工作总结

  银行安全保卫的工作总结(银行保卫工作总结)

查看更多相似文章
  • id_5广告位-99%*100
发表评论
畅言评论-后台-模板-公共模板变量-评论模板中修改
  • id_2广告位-99%*100
  • id_3广告位-99%*100
  • id_3广告位-99%*100

最新文章

推荐阅读
你可能感兴趣

©Copyright ©2007-2016 www.zizaicun.com (云端美智) All Rights Reserved 合作QQ:2775252566 蜀ICP备2023030772号-8   

网上开店
淘宝运营
活动大促
其他

©Copyright ©2007-2016 www.zizaicun.com (云端美智) All Rights Reserved 合作QQ:2775252566 蜀ICP备2023030772号-8